
Simple Serial Interface (SSI)
Software Developer’s Kit
Programmer Guide

Simple Serial Interface (SSI) Software Developer’s Kit
Programmer Guide

72E-59860-03

Revision A

September 2007

ii Simple Serial Interface (SSI) Software Developer’s Kit Programmer Guide
© 2007 by Motorola, Inc. All rights reserved.

No part of this publication may be reproduced or used in any form, or by any electrical or mechanical means,
without permission in writing from Motorola. This includes electronic or mechanical means, such as
photocopying, recording, or information storage and retrieval systems. The material in this manual is subject to
change without notice.

The software is provided strictly on an “as is” basis. All software, including firmware, furnished to the user is on
a licensed basis. Motorola grants to the user a non-transferable and non-exclusive license to use each
software or firmware program delivered hereunder (licensed program). Except as noted below, such license
may not be assigned, sublicensed, or otherwise transferred by the user without prior written consent of
Motorola. No right to copy a licensed program in whole or in part is granted, except as permitted under
copyright law. The user shall not modify, merge, or incorporate any form or portion of a licensed program with
other program material, create a derivative work from a licensed program, or use a licensed program in a
network without written permission from Motorola. The user agrees to maintain Motorola’s copyright notice on
the licensed programs delivered hereunder, and to include the same on any authorized copies it makes, in
whole or in part. The user agrees not to decompile, disassemble, decode, or reverse engineer any licensed
program delivered to the user or any portion thereof.

Motorola reserves the right to make changes to any software or product to improve reliability, function, or
design.

Motorola does not assume any product liability arising out of, or in connection with, the application or use of
any product, circuit, or application described herein.

No license is granted, either expressly or by implication, estoppel, or otherwise under any Motorola, Inc.,
intellectual property rights. An implied license only exists for equipment, circuits, and subsystems contained in
Motorola products.

MOTOROLA and the Stylized M Logo and Symbol and the Symbol logo are registered in the US Patent &
Trademark Office. Bluetooth is a registered trademark of Bluetooth SIG. Microsoft, Windows and ActiveSync
are either registered trademarks or trademarks of Microsoft Corporation. All other product or service names
are the property of their respective owners.

Motorola, Inc.
One Motorola Plaza
Holtsville, New York 11742-1300
http://www.symbol.com

http://www.symbol.com

 iii
Revision History
Changes to the original manual are listed below:

Change Date Description

-01 Rev A 12/2002 Initial Rev A Release.

-02 Rev A 1/2003 Add missing information.

-03 Rev A 9/2007 Add UpdateFirmware and AbortFWUpdate APIs, add new API return value error codes,
add WM_FW_UPDATE_PROGRESS, WM_FW_UPDATE_BAUD, and
WM_FW_UPDATE_FAILED Windows messages.

iv Simple Serial Interface (SSI) Software Developer’s Kit Programmer Guide

Table of Contents
About This Guide
Introduction .. vii
Chapter Descriptions ... vii
Notational Conventions.. vii
Related Documents ... viii
Service Information.. viii

Chapter 1: Simple Serial Interface (SSI) API
Introduction ... 1-1
API Descriptions ... 1-2

SSIConnect ... 1-2
SSIDisconnect .. 1-3
AbortFWUpdate .. 1-4
AbortImageXfer ... 1-5
AbortMacroPdf .. 1-6
AimOn/AimOff ... 1-7
EnterLowPwrMode .. 1-8
FlushMacroPdf .. 1-9
LedOn/LedOff ... 1-10
PullTrigger ... 1-11
ReleaseTrigger ... 1-12
RequestAllParameters .. 1-13
RequestParameters .. 1-14
RequestScannerCapabilities ... 1-16
ReturnDLLVersion ... 1-17
ScanEnable/ScanDisable ... 1-18
SetCapabilitiesBuffer .. 1-19
SetDecodeBuffer ... 1-20
SetImageBuffer ... 1-21
SetParameterBuffer .. 1-22
SetParameters .. 1-23
SetParamPersistance ... 1-24
SetVersionBuffer ... 1-25

vi Simple Serial Interface (SSI) Software Developer’s Kit Programmer Guide
SetVideoBuffer .. 1-26
SnapShot .. 1-27
SoundBeeper .. 1-28
TransmitVersion .. 1-29
TransmitVideo ... 1-30
UpdateFirmware ... 1-31

Library Error Reporting ... 1-32
API Return Values .. 1-32
SSI WM_ERROR Messages .. 1-34
SSI WM_TIMEOUT Messages ... 1-35

Beep Command Parameters .. 1-35
Data Returned by the DLL .. 1-36
Windows Messages Sent to Calling Process ... 1-37

Chapter 2: ActiveX Control
Introduction ... 2-1

Adding the SSIConnect Component to Your Project .. 2-1
Setting Properties ... 2-1

Communicating with the Scanner Using Your Control .. 2-4
Command Methods ... 2-4
SendCommand(Command As Long) As Long .. 2-5
RequestParameter(Parameter As Long) As Long .. 2-6
ChangeParameter(Parameter As Long, Value As Long) As Long 2-7

Parameter Numbers ... 2-8
Events ... 2-10

Event Handling in Visual Basic ... 2-10
AllParametersAvailable ... 2-11
DecodeDataAvailable ... 2-12
EventDataAvailable ... 2-12
ImageDataAvailable .. 2-13
ImageTransferStatusAvailable .. 2-13
ParameterAvailable ... 2-13
ScannerCapabilities .. 2-14
ScannerStatusAvailable .. 2-16
VersionDataAvailable .. 2-16

Index

About This Guide
Introduction
The Simple Serial Interface (SSI) Software Developer’s Kit Programmer Guide describes the Application
Programming Interface (API) to the SSIDLL, which provides a communications link between Motorola decoders
and a Windows 95/98/2000/XP host using the serial port. This guide also provides instructions for adding and
using the ActiveX control, which facilitates using the SSI DLL within Visual Basic.

Chapter Descriptions
• Chapter 1, Simple Serial Interface (SSI) API describes the SSIDLL, developed using Microsoft Visual C++

V6.0. The DLL implements serial communications, reader and writer threads, SSI message building and the
SSI protocol.

• Chapter 2, ActiveX Control provides instructions for adding the SSIConnect.ocx component to a Visual Basic
project. Refer to the on-line help for specific information on using the ocx and its properties, methods and
events.

Notational Conventions
The following conventions are used in this document:

• “User” refers to anyone using an SSI compatible product.

• “You” refers to the End User, System Administrator or Programmer using this manual as a reference for SSI.

• Italics are used to highlight the following:
• Chapters and sections in this and related documents
• Specific items in the general text
• Dialog boxes and tabs within dialog boxes.

viii Simple Serial Interface (SSI) Software Developer’s Kit Programmer Guide
• bullets (•) indicate:
• Action items
• Lists of alternatives
• Lists of required steps that are not necessarily sequential

• Sequential lists (e.g., those that describe step-by-step procedures) appear as numbered lists.

Related Documents
• Universal Scan Engine Developer’s Kit Installation Guide, p/n 72-59636-xx

• Simple Serial Interface (SSI) Programmer’s Guide, p/n 72-40451-xx

• Simple Serial Interface (SSI) Developer’s Guide, p/n 72-50705-xx

• The Product Reference Guide or Integration Guide for your scanner for product-specific information on SSI.

For the latest versions of these guides go to: http://support.symbol.com.

Service Information
If you have a problem with your equipment, contact Motorola Enterprise Mobility Support for your region. Contact
information is available at: http://www.symbol.com/contactsupport. If you purchased your Enterprise Mobility
business product from a Motorola business partner, contact that business partner for support.

Before contacting, have the model number and serial number at hand. If your problem cannot be solved by
Motorola Enterprise Mobility Support, you may need to return your equipment for servicing and will be given
specific directions.

Motorola is not responsible for any damages incurred during shipment if the approved shipping container is not
used. Shipping the units improperly can possibly void the warranty.

http://www.symbol.com/manuals
http://www.symbol.com/contactsupport

Chapter 1 Simple Serial Interface (SSI) API
Introduction
This implementation of SSI (Simple Serial Interface) uses handshaking (RTS/CTS) to communicate with an SSI
device. These signals are required and must be connected. The SSI DLL implements serial communications,
reader and writer threads, SSI message building, and the SSI protocol handling needed to provide a
communications link between Motorola decoders and a Windows host. To set the host communication option to
SSI, scan the bar code parameter for SSI Host.

SSI is a transaction-based protocol. After a command function is called, control returns to the host application while
the scanner processes the command. After the command is processed by the scanner, the host application
receives a Windows message indicating the command was processed. The host application should provide a
message handler for the acknowledgement from the connected SSI device before initiating another command.

The Windows host program also receives Windows messages when the decoder has data to send to the host or
when a timeout or error occurs. The Windows host program provides data storage for the DLL to use for returning
scanner data to the application.

All function prototypes and #defines can be found in SSIdll.h.

1 - 2 Simple Serial Interface (SSI) Software Developer’s Kit Programmer Guide
API Descriptions

SSIConnect

Description

This must be the first call to the library. It opens the COM port using the indicated baud rate, COM port number, and
handle of the window whose procedure will receive Windows messages from the library. No command is sent to
the scanner during this API call. Unless a call to disable the scanner is issued, the scanner may send decode data
at any time after it is connected. Therefore, the host application should call the API function SetDecodeBuffer after
a successful call to SSIConnect if it wants to handle unsolicited decode data from the scanner. Also, all data,
including Decode Data, must be sent using ACK/NAK handshaking. If this is not the default setting for your
scanner, use bar code parameters or call the API function SetParameters() to set the Decode Data Packet
parameter to use ACK/NAK protocol.

Syntax
SSIDLL_API int __stdcall SSIConnect(HWND hwnd, long Baud, int Port);

where:

• hwnd is the handle of the window whose procedure will receive Windows messages from the library.

• Baud is the baud rate to use

• Port is the COM port number to open

Return Values

• SSICOMM_NOERROR if the COM port was opened successfully.

• An error code if an error occurred (see Table 1-1 on page 1-32)

Example

int status;

// using baud rate of 9600, com port number 1
status = SSIConnect(m_hWnd, 9600, 1);

Simple Serial Interface (SSI) API 1 - 3
SSIDisconnect

Description

Terminates the communications link and releases all memory used by the library. No command is sent to the
scanner during this API call. Always call this function when the application is finished communicating with the
decoder.

Syntax
SSIDLL_API int __stdcall SSIDisconnect(HWND hwnd, int nComPort);

where:

• hwnd is the handle of the window used during the call to SSIConnect for this COM port

• Port is the COM port number to close

Return Values

• SSICOMM_NOERROR if the Com Port was disconnected successfully

• An error code if an error occurred (see Table 1-1 on page 1-32)

Example

int status;
status = SSIDisonnect(m_hWnd, 1); // using com port number 1

1 - 4 Simple Serial Interface (SSI) Software Developer’s Kit Programmer Guide
AbortFWUpdate

Description

Aborts the update firmware process on the scanner. Following this call, the message WM_FW_UPDATE_FAILED
is issued with lparam set to FW_UPDATE_ABORTED.

Syntax
SSIDLL_API int __stdcall AbortFWUpdate(HWND hwnd,int nComPort);

where:

• hwnd is the handle of the window whose procedure receives windows messages from the library

• nComPort is the COM port number to use

Return Values

• SSICOMM_NOERROR if the command was sent successfully

• An error code if an error occurred (see Table 1-1 on page 1-32)

Example

#define COM_PORT0x01//COM port number

int status;
int nComPort= COM_PORT;

status = AbortFWUpdate(m_hWnd, nComPort);

Simple Serial Interface (SSI) API 1 - 5
AbortImageXfer

Description

Tells the scanner to stop transmitting the image being sent.

Syntax
SSIDLL_API int __stdcall AbortImageXfer(int nComPort);

where:

• nComPort is the COM port number used in the call to SSIConnect

Return Values

• SSICOMM_NOERROR if the command was sent successfully

• An error code if an error occurred (see Table 1-1 on page 1-32)

Example
int status;
status = AbortImageXfer (1); // using com port number 1

1 - 6 Simple Serial Interface (SSI) Software Developer’s Kit Programmer Guide
AbortMacroPdf

Description

Sends a command to the scanner to abort the current MacroPDF scanning session and discard any stored
MacroPDF data.

Syntax
Description SSIDLL_API int __stdcall AbortMacroPdf(int nComPort);

where:

• nComPort is the COM port number used in the call to SSIConnect

Return Value

• SSICOMM_NOERROR if the command was sent successfully

• An error code if an error occurred (see Table 1-1 on page 1-32)

Example
int status;
status = AbortMacroPdf(1); // using com port number 1

Simple Serial Interface (SSI) API 1 - 7
AimOn/AimOff

Description

Sends the Aim On or Aim Off command to the scanner. AimOn turns on the aiming pattern of an imager, AimOff
turns it off.

Syntax
SSIDLL_API int __stdcall AimOn(int nComPort);
SSIDLL_API int __stdcall AimOff(int nComPort);

where:

• nComPort is the COM port number used in the call to SSIConnect

Return Value

• SSICOMM_NOERROR if the command was sent successfully

• An error code if an error occurred (see Table 1-1 on page 1-32)

Example

int status;
status = AimOn(1); // using com port number 1

1 - 8 Simple Serial Interface (SSI) Software Developer’s Kit Programmer Guide
EnterLowPwrMode

Description

Sends a command to the scanner to enter low power mode.

Syntax
SSIDLL_API int __stdcall EnterLowPwrMode(int nComPort);

where:

• nComPort is the COM port number used in the call to SSIConnect

Return Value

• SSICOMM_NOERROR if the command was sent successfully

• An error code if an error occurred (see Table 1-1 on page 1-32)

Example
int status;
status = EnterLowPwrMode(1); // using com port number 1

Simple Serial Interface (SSI) API 1 - 9
FlushMacroPdf

Description

Sends a command to the scanner to abort the current MacroPDF scanning session and transmit stored MacroPDF
data. This call must be preceded by a call to SetDecodeBuffer to provide a buffer for the data that will be returned
from the scanner.

Syntax
SSIDLL_API int __stdcall FlushMacroPdf(int nComPort);

where:

• nComPort is the COM port number used in the call to SSIConnect

Return Value

• SSICOMM_NOERROR if the command was sent successfully

• An error code if an error occurred (see Table 1-1 on page 1-32)

Example
int status;
status = FlushMacroPdf(1); // using com port number 1

1 - 10 Simple Serial Interface (SSI) Software Developer’s Kit Programmer Guide
LedOn/LedOff

Description

Sends a command to the scanner to turn on or turn off the LED. LedOn turns on the LED of the scanner, and
LedOff turns it off. Which LED to turn on or off is specified as a bit in the nLEDselection parameter.

Syntax
SSIDLL_API int __stdcall LedOn(int nComPort, unsigned char nLEDselection);
SSIDLL_API int __stdcall LedOff(int nComPort, unsigned char nLEDselection);

where:

• nComPort is the COM port number used in the call to SSIConnect

• nLEDselector is the bitwise indicator for the LED to be turned on or off (scanner-dependent)

Return Value

• SSICOMM_NOERROR if the command was sent successfully

• An error code if an error occurred (see Table 1-1 on page 1-32)

Example

int status;
unsigned char decode_led = 0x02; // assumes led is represented using bit 1

status = LedOn(1, decode_led); // using com port number 1, turn on led

Simple Serial Interface (SSI) API 1 - 11
PullTrigger

Description

Sends a command to the scanner to perform a software trigger, causing the scanner to behave as if the trigger
were pulled. Some scanners require setting the trigger mode to host mode. To do this, call SetParameters before
the PullTrigger API function. See the documentation for your scanning device.

• If the scanner is in Decode Mode, the laser (or camera) turns off after a successful decode or a call to
ReleaseTrigger.

• If the scanner is in Image Capture Mode and a call to Snapshot was made prior to the PullTrigger call, the
camera captures an image and turns off (ReleaseTrigger call is not necessary).

• If the scanner is in Video Mode, the camera turns off after a call to ReleaseTrigger.

Syntax

SSIDLL_API int __stdcall PullTrigger(int nComPort);

where:

• nComPort is the COM port number used in the call to SSIConnect

Return Value

• SSICOMM_NOERROR if the command was sent successfully

• An error code if an error occurred (see Table 1-1 on page 1-32)

Example

int status;
status = PullTrigger(1); // using com port number 1

1 - 12 Simple Serial Interface (SSI) Software Developer’s Kit Programmer Guide
ReleaseTrigger

Description

Sends a command to the scanner to release the software trigger. On the VS 4004 in video mode (or decode mode
if no bar code was decoded), the application must call ReleaseTrigger, after a call to PullTrigger. Laser-based
decoders timeout automatically.

Call ReleaseTrigger to abort a decode attempt or video transmission.

Syntax

SSIDLL_API int __stdcall ReleaseTrigger(int nComPort);

where:

• nComPort is the COM port number used in the call to SSIConnect

Return Value

• SSICOMM_NOERROR if the command was sent successfully

• An error code if an error occurred (see Table 1-1 on page 1-32)

Example

int status;
status = ReleaseTrigger(1); // using com port number 1

Simple Serial Interface (SSI) API 1 - 13
RequestAllParameters

Description

Sends a request to the scanner to return all its parameters and their values. This call must be preceded by a call to
SetParameterBuffer to provide a buffer for the data that will be returned from the scanner. After the scanner
responds to the request and the DLL stores the parameter data, a Windows message is sent to the host application
indicating that the data is available.

Syntax
SSIDLL_API int __stdcall RequestAllParameters(int nComPort);

where:

• nComPort is the COM port number used in the call to SSIConnect

Return Value

• SSICOMM_NOERROR if the command was sent successfully

• An error code if an error occurred (see Table 1-1 on page 1-32)

Example
#define PARAM_RETURN_DATA_LEN 2000
//globally defined data storage
unsigned char ParamReturnData[PARAM_RETURN_DATA_LEN];

int status;
// Give the DLL a buffer to use when the scanner returns the parameter data
SetParameterBuffer(1, ParamReturnData, PARAM_RETURN_DATA_LEN);
// using com 1
status = RequestAllParameters(1); // using com port number 1

// If status is good, the request was sent. Later, when the DLL receives the
// data back from the scanner, the data will be stored in the ParamReturnData
// buffer and the application will receive a windows message.

1 - 14 Simple Serial Interface (SSI) Software Developer’s Kit Programmer Guide
RequestParameters

Description

Requests the scanner to send parameter values specified in the given parameter string. This call must be
preceded by a call to SetParameterBuffer to provide a buffer for the data that will be returned from the scanner.
After the DLL receives the parameter data from the scanner, it sends the host application a Windows message
indicating that the parameter data is available.

Syntax
SSIDLL_API int __stdcall RequestParameters(unsigned char *Params, int ParamBytes, int nComPort);

where:

• Params is a buffer of byte values which specifies the parameter numbers whose values are being requested
from the scanner. The format of the parameter number is either:
• <param_num> if the parameter number is in the range 0..EFh; or
• <extended parameter code><parm_num_offset> for parameters whose param_num is 256 or higher.

Refer to the documentation for the scanning device for parameter numbers.

• nParamBytes is the number of bytes in the Params buffer.

• nComPort is the COM port number used in the call to SSIConnect

Return Value

• SSICOMM_NOERROR if the command was sent successfully

• An error code if an error occurred (see Table 1-1 on page 1-32)

Simple Serial Interface (SSI) API 1 - 15
Example
#define SWTRIG_PARAMNUM0x8a // software trigger parameter number
#define EXTENDED_PARAMNUM0xf0 // specify an extended parameter number
#define IMAGE_FILETYPE_PARAMNUM0x30
#define PARAM_RETURN_DATA_LEN 2000
//globally defined data storage
unsigned char ParamReturnData[PARAM_RETURN_DATA_LEN];

int status;
unsigned char Params[3];
Params[0] = SWTRIG_PARAMNUM; // get the software trigger setting
Params[1] = EXTENDED_PARAMNUM; // use extended param number for
Params[2] = IMAGE_FILETYPE_PARAMNUM // …image filetype setting
// Give the dll a buffer to use when the scanner returns the parameter data
// using com 1
SetParameterBuffer(1, ParamReturnData, PARAM_RETURN_DATA_LEN);
// Send the request which is stored in Params and is 3 bytes long
status = RequestParameters(Params, 3, 1); // using com port number 1
// If status is good, the request was sent. Later, when the DLL receives the
// data back from the scanner, the data will be stored in the ParamReturnData
// buffer and the application will receive a windows message.

1 - 16 Simple Serial Interface (SSI) Software Developer’s Kit Programmer Guide
RequestScannerCapabilities

Description

Sends a request to the scanner to send its capabilities data, i.e., the commands it can perform. This call must be
preceded by a call to SetCapabilitiesBuffer. When the scanner responds to this command with its capabilities data,
the DLL sends a Windows message to the host application indicating that capabilities data is stored.

Syntax
SSIDLL_API int __stdcall RequestScannerCapabilities(int nComPort);

where:

• nComPort is the COM port number used in the call to SSIConnect

Return Value

• SSICOMM_NOERROR if the command was sent successfully

• An error code if an error occurred (see Table 1-1 on page 1-32)

Example
#define CAPABILITIES_RETURN_DATA_LEN 255
//globally defined data storage
unsigned char CapabilitesReturnData[CAPABILITIES_RETURN_DATA_LEN];

int status;
// Give the dll a buffer to use when the scanner returns the data
// using com 1
SetCapabilitiesBuffer(1, CapabilitesReturnData, CAPABILITIES_RETURN_DATA_LEN);
status = RequestScannerCapabilities(1); // using com port number 1
// If status is good, the request was sent. Later, when the DLL receives the
// data back from the scanner, the data will be stored in the
// CapabilitiesReturnData buffer and the application will receive a windows
// message.

Simple Serial Interface (SSI) API 1 - 17
ReturnDLLVersion

Description

Returns the major and minor version levels of the DLL. No command is sent to the scanner during this API call.

Syntax
SSIDLL_API unsigned int __stdcall ReturnDLLVersion(void);

Return Value

The minor version level is returned in the lower byte, the major version level is returned in the next higher order
byte.

Example

unsigned int version, major, minor;
CString msg;

version = ReturnDLLVersion();

major = (version & 0x0000ff00) >> 8;
minor = version & 0x000000ff;

msg.Format("Library Version %d.%d", major, minor);

1 - 18 Simple Serial Interface (SSI) Software Developer’s Kit Programmer Guide
ScanEnable/ScanDisable

Description

Sends a command to the scanner to enable or disable the scanner. ScanEnable enables scanning, while
ScanDisable disables scanning. When scanning is disabled, the scanner does not respond to a physical or
software trigger pull.

Syntax
SSIDLL_API int __stdcall ScanEnable(int nComPort);
SSIDLL_API int __stdcall ScanDisable(int nComPort);

where:

• nComPort is the COM port number used in the call to SSIConnect

Return Value

• SSICOMM_NOERROR if the command was sent successfully

• An error code if an error occurred (see Table 1-1 on page 1-32)

Example

int status;
status = ScanEnable(1); // using com port number 1

Simple Serial Interface (SSI) API 1 - 19
SetCapabilitiesBuffer

Description

Allows the application to specify the address and the length of a buffer for the DLL to use to store the capabilities
data from the scanner. Set the capabilities data buffer immediately before a call to RequestScannerCapabilities. No
command is sent to the scanner during this API call. The amount of data returned is variable; a buffer of length 256
should be sufficient.

Syntax
SSIDLL_API int __stdcall SetCapabilitiesBuffer(int nComPort, unsigned char *pData, long max_length);

where:

• nComPort is the COM port number used in the call to SSIConnect

• pData is a pointer to the destination buffer for capabilities data returned from the scanner

• max_length is the size in bytes of the destination buffer

Return Value

• SSICOMM_NOERROR if the command was sent successfully

• An error code if an error occurred (see Table 1-1 on page 1-32)

Example

#define CAPABILITIES_DATA_LEN 255
//globally defined data storage
unsigned char CapabilitiesReturnData[CAPABILITIES_DATA_LEN];

int status;

status = SetCapabilitiesBuffer(1, CapabilitiesReturnData, MAX_DATA_LEN);
// using com port number 1

1 - 20 Simple Serial Interface (SSI) Software Developer’s Kit Programmer Guide
SetDecodeBuffer

Description

Sets the decode data buffer and its length for the DLL to use to store decode data from the scanner. No command
is sent to the scanner during this API call.

The length of decode data depends on the type of bar code scanned; if MacroPDF is buffered, large amounts of
data are possible. When the DLL has decode data from the scanner, this buffer is filled and a Windows message is
sent to the application to indicate that decode data is stored. The host application must then call SetDecodeBuffer
again in order to receive additional decode data from the scanner.

Syntax

SSIDLL_API int __stdcall SetDecodeBuffer(int nComPort, unsigned char *pData, long max_length);

where:

• nComPort is the COM port number used in the call to SSIConnect

• pData is a pointer to the destination buffer for decode data returned from the scanner

• max_length is the size in bytes of the destination buffer

Return Value

• SSICOMM_NOERROR if the command was sent successfully

• An error code if an error occurred (see Table 1-1 on page 1-32)

Example

#define DECODE_DATA_LEN 255
//globally defined data storage
unsigned char DecodeData[DECODE_DATA_LEN];

int status;

status = SetDecodeBuffer(1, DecodeData, DECODE_DATA_LEN);
// using com port number 1

Simple Serial Interface (SSI) API 1 - 21
SetImageBuffer

Description

Sets the image data buffer and its length for the DLL to use to store image data from the scanner. No command is
sent to the scanner during this API call. By handling the image transfer status Windows messages sent by the DLL
which specify total size of the image in bytes, the host application can create a buffer of the necessary size once an
image transfer is initiated. When the DLL has the entire image data from the scanner, the destination buffer is filled
and a Windows message is sent to the application indicating that the image data is available.

Call the SetimageBuffer function when the first image transfer status message is sent to the application, which
holds the length information for the entire image.

Syntax

SSIDLL_API int __stdcall SetImageBuffer(int nComPort, unsigned char *pData, long max_length);

where:

• nComPort is the COM port number used in the call to SSIConnect

• pData is a pointer to the destination buffer for image data returned from the scanner

• max_length is the size in bytes of the destination buffer

Return Value

• SSICOMM_NOERROR if the command was sent successfully

• An error code if an error occurred (see Table 1-1 on page 1-32)

Example

afx_msg LRESULT CSSIappView::OnSSIxferStatus(WPARAM w, LPARAM l)
{

long running_total = (long)w;
long expected_total = (long)l;

// the buffer will not be needed until the image transfer has completed
// images come in packets of 255 bytes (last packet may be less)
if(running_total <= 255) // the start of an image transfer
{

g_pImageData = new BYTE[expected_total + 1];
if(g_pImageData != NULL)
SetImageBuffer(Comport, g_pImageData, expected_total);
// now DLL has a place to put the image when done

}
}

1 - 22 Simple Serial Interface (SSI) Software Developer’s Kit Programmer Guide
SetParameterBuffer

Description

Sets the user's destination buffer and its length for the DLL to use to store parameter data from the scanner. No
command is sent to the scanner during this API call. Set the parameter data buffer immediately before calling
RequestParameters or RequestAllParameters. A size of 2000 bytes should be sufficient to hold all the parameter
number/value pairs. A call for a single parameter only requires a small buffer: 10 bytes is sufficient.

Syntax
SSIDLL_API int __stdcall SetParameterBuffer(int nComPort, unsigned char *pData, long max_length);

where:

• nComPort is the COM port number used in the call to SSIConnect

• pData is a pointer to the destination buffer for parameter data returned from the scanner

• max_length is the size in bytes of the destination buffer

Return Value

• SSICOMM_NOERROR if the command was sent successfully

• An error code if an error occurred (see Table 1-1 on page 1-32)

Example

#define PARAM_RETURN_DATA_LEN 2000
//globally defined data storage
unsigned char ParamReturnData[PARAM_RETURN_DATA_LEN];

int status;

// using com port number 1
status = SetParamterBuffer(1, ParamReturnData, PARAM_RETURN_DATA_LEN);

Simple Serial Interface (SSI) API 1 - 23
SetParameters

Description

Commands the scanner to change one or more of the scanner’s parameter values. The format of the parameters
and their values is either:

• <param_num><value> if param num is in the range 0..EFh; or

• <extended parameter code><parm_num_offset><value> for parameters whose param_num is 256 or higher

if <value> is a two byte value rather than a one byte value, the param num/value pair is preceeded by the hex value
0xF4

Syntax
SSIDLL_API int __stdcall SetParameters(unsigned char *Params, int ParamBytes, int nComPort);

where:

• Params is a pointer to the param_num/value data

• ParamBytes is the size in bytes of the data stored in Params

• nComPort is the COM port number used in the call to SSIConnect

Return Value

• SSICOMM_NOERROR if the command was sent successfully

• An error code if an error occurred (see Table 1-1 on page 1-32)

Example

#define IMAGE_FILETYPE_PARAMNUM 0x30
// this specifies an extended parameter number
#define EXTENDED_PARAMNUM0xf0
#define BITMAP_TYPE 0x03
#define TRIGGER_MODE 0x8a
#define HOST_TRIGGER_TYPE0x08

int status;
unsigned char Params[5];
Params[0] = EXTENDED_PARAMNUM; // use extended param number for
Params[1] = IMAGE_FILETYPE_PARAMNUM; //…image file type
Params[2] = BITMAP_TYPE; // this is the value for the image filetype param
Params[3] = TRIGGER_MODE; // now set a second parameter for trigger mode
Params[4] = HOST_TRIGGER_TYPE; // and it's value to host

// 5 bytes were stored and we are using com port number 1
status = SetParamters(Params, 5, 1);

NOTE To enable ACK/NAK handshaking for decode data on the SE 1223 use 0xEE (decimal 238) for the
parameter number, and use 1 for the value.

1 - 24 Simple Serial Interface (SSI) Software Developer’s Kit Programmer Guide
SetParamPersistance

Description

Sets the persistance quality for any parameter changes requested. Parameters may be changed permanently or
temporarily. No command is sent to the scanner during this API call; during any subsequent call to SetParameters,
the persistance quality given here is used. By default, parameter changes are temporary.

Syntax

SSIDLL_API int __stdcall SetParamPersistance(int nComPort, int bPersist);

where:

• nComPort is the COM port number used in the call to SSIConnect

• bPersist is set to TRUE if persistance is desired, FALSE if not

Return Value

• SSICOMM_NOERROR if the command was sent successfully

• An error code if an error occurred (see Table 1-1 on page 1-32)

Example
#int status;
status = SetParamPersistance(1, FALSE); // using com port number 1

NOTE Permanent parameter changes involve writes to non-voloatile memory (NVM). There is a large but finite
number of write cycles available to the NVM. Be careful not to use the permanent parameter change
method on parameters that change often.

Simple Serial Interface (SSI) API 1 - 25
SetVersionBuffer

Description

Sets the user's destination buffer and its length for the DLL to use to store version data from the scanner. No
command is sent to the scanner during this API call. Set the version data buffer immediately before calling
TransmitVersion. The amount of data returned is variable; a buffer of length 256 should be sufficient.

Syntax
SSIDLL_API int __stdcall SetVersionBuffer(int nComPort, unsigned char *pData, long max_length);

where:

• nComPort is the COM port number used in the call to SSIConnect

• pData is a pointer to the destination buffer for version data returned from the scanner

• max_length is the size in bytes of the destination buffer

Return Value

• SSICOMM_NOERROR if the command was sent successfully

• An error code if an error occurred (see Table 1-1 on page 1-32)

Example

#define VERSION_DATA_LEN 255
//globally defined data storage
unsigned char VersionData[VERSION_DATA_LEN];

int status;

// using com port number 1
status = SetVersionBuffer(1, VersionData, VERSION_DATA_LEN);

1 - 26 Simple Serial Interface (SSI) Software Developer’s Kit Programmer Guide
SetVideoBuffer

Description

Sets the user's destination buffer and its length for the DLL to use to store video data from the scanner. No
command is sent to the scanner during this API call. Video data is sent continuously when the scanner is in video
mode, so when the application receives the Windows message notifying it that Video data has been stored, the
host program should process the stored video frame then call SetVideoBuffer again to set the destination for the
next frame. 5000 bytes is a sufficient video buffer size.

Syntax
SSIDLL_API int __stdcall SetVideoBuffer(int nComPort, unsigned char *pData, long max_length);

where:

• nComPort is the COM port number used in the call to SSIConnect

• pData is a pointer to the destination buffer for video data returned from the scanner

• max_length is the size in bytes of the destination buffer

Return Value

• SSICOMM_NOERROR if the command was sent successfully

• An error code if an error occurred (see Table 1-1 on page 1-32)

Example

#define VIDEO_DATA_LEN 5000
//globally defined data storage
unsigned char VideoData[VIDEO_DATA_LEN];

int status;

// using com port number 1
status = SetVideoBuffer(1, VideoData, VIDEO_DATA_LEN);

Simple Serial Interface (SSI) API 1 - 27
SnapShot

Description

If the scanner supports imaging, this sends a command to the scanner to enter Image Capture Mode. The scanner
remains in Image Capture Mode until the trigger is pulled (physically or with a call to PullTrigger) and an image is
captured, or until the timeout for a trigger pull expires. The scanner then returns to Decode Mode.

If the trigger is pulled, the image data is sent in packets to the DLL. As each packet is received, a
WM_XFERSTATUS is sent to the host application with information about the size of the image. When the first
transfer status message is received, the host application should provide a destination buffer for the image by
calling SetImageBuffer. After the entire image is transferred from the scanner to the DLL, the application receives a
Windows message indicating that the data was stored.

Syntax

SSIDLL_API int __stdcall SnapShot(int nComPort);

where:

• nComPort is the COM port number used in the call to SSIConnect

Return Value

• SSICOMM_NOERROR if the command was sent successfully

• An error code if an error occurred (see Table 1-1 on page 1-32)

Example

int status;
status = SnapShot(1); // using com port number 1

1 - 28 Simple Serial Interface (SSI) Software Developer’s Kit Programmer Guide
SoundBeeper

Description

Sends a command to the scanner to turn the beeper on. See Table 1-5 on page 1-35 for beep codes.

Syntax
SSIDLL_API_stdcall SoundBeeper(in nComPort, unsigned char nBeepCode);

where:

• nComPort is the COM port number used in the call to SSIConnect

• nBeepCode specifies the tone and duration for the beep

Return Value

• SSICOMM_NOERROR if the command was sent successfully

• An error code if an error occurred (see Table 1-1 on page 1-32)

Example

int status;
status = SoundBeeper(1, ONESHORTHI); // using com port number 1

Simple Serial Interface (SSI) API 1 - 29
TransmitVersion

Description

Sends a request to the scanner to send its software release name. Call SetVersionBuffer before this call to provide
a destination buffer for the version data when it is sent by the scanner. After the scanner responds with the version
data, the DLL sends the host application a Windows message indicating that the version data is available.

Syntax
SSIDLL_API int __stdcall TransmitVersion(int nComPort);

where:

• nComPort is the COM port number used in the call to SSIConnect

Return Value

• SSICOMM_NOERROR if the command was sent successfully

• An error code if an error occurred (see Table 1-1 on page 1-32)

Example
#define VERSION_DATA_LEN 255
// globally defined data storage
unsigned char VersionData[VERSION_DATA_LEN];

int status;

status = SetVersionBuffer(1, VersionData, VERSION_DATA_LEN); // using com port number 1
// check status then…
status = TransmitVersion(1);); // using com port number 1

1 - 30 Simple Serial Interface (SSI) Software Developer’s Kit Programmer Guide
TransmitVideo

Description

Sends a command to the imager to enter Video Mode. After the trigger is pulled (physically or with a call to
PullTrigger), the decoder produces a continuous video stream until the trigger is released (physically or with a call
to ReleaseTrigger). The destination buffer for each video frame must be set with a call to SetVideoBuffer.

Syntax

SSIDLL_API int __stdcall TransmitVideo(int nComPort);

where:

• nComPort is the COM port number used in the call to SSIConnect

Return Value

• SSICOMM_NOERROR if the command was sent successfully

• An error code if an error occurred (see Table 1-1 on page 1-32)

NOTE The VS 4004 does not currently support this.

Simple Serial Interface (SSI) API 1 - 31
UpdateFirmware

Description

Updates firmware on the scanner including firmware file processing. This function negotiates the baud rate with the
scanner, so actual firmware update may occur at a higher baud rate than that set by the user. During firmware
update, this function issues messages indicating update progress (WM_FW_UPDATE_PROGRS), failure
(WM_FW_UPDATE_FAILED), or negotiated baud rate (WM_FW_UPDATE_BAUD). It returns
SSICOMM_NOERROR for success, or a proper error code.

While the API always returns to SSI mode, after calling this function you must call SSIDisconnect() to disconnect
the scanner, scan the appropriate SSI Host Types bar code in the scanner’s Product Reference Guide to set the
scanner to SSI mode, then call SSIConnect() to re-connect. In order to receive decode data from the scanner, you
may also need to set the Decode Data Packet Format parameter to Send Packeted Decode Data in SSI Host
Preferences in the scanner’s Product Reference Guide.

Syntax

SSIDLL_API int __stdcall UpdateFirmware(HWND hwnd,int nComPort,char* file_path)

where:

• hwnd is the handle of the window whose procedure receives windows messages from the library

• nComPort is the COM port number to use

• file_path is the pointer to the buffer which contains the path to the firmware update file

Return Values

• SSICOMM_NOERROR if the command was sent successfully

• An error code if an error occurred (see Table 1-1 on page 1-32)

Example
#define COM_PORT 0x01 //COM port number

int status;
int nComPort= COM_PORT;
char file_path[]="c:\\firmware_file.dat";

status = UpdateFirmware(m_hWnd, nComPort, file_path);

1 - 32 Simple Serial Interface (SSI) Software Developer’s Kit Programmer Guide
Library Error Reporting
All library function calls return 0 if successful, or an error code. If the error code is a fatal error, call SSIDisconnect.
Table 1-1 describes the errors that can be reported.

In addition to the failure status returned by library function and error codes, the library can also send or post a
WM_ERROR message to the application. The application handles the message and responds appropriately.

API Return Values

Table 1-1 Error Codes (Return Values for API Calls)

Define Name Value Description

SSICOMM_NOERROR 0 No error code is set; an API call was successful.

ERR_SSI_NOOBJECT -1 Another API function is called before a successful call to
SSIConnect; no connection established.

ERR_SSI_HWND -2 The hwnd parameter to the SSIConnect function was
NULL; no connection established.

SSICOMM_BAD_SETSTATE -3 The library was unable to set the state of the COM port; no
connection established.

SSICOMM_BADSETTIMEOUTS -4 The library was unable to set the COM timeouts; no
connection established.

SSICOMM_BAD_GETTIMEOUTS -5 The library was unable to get the current COM timeouts;
no connection established.

SSICOMM_BAD_GETCOMSTATE -6 The library was unable to get the current COM state; no
connection established.

SSICOMM_ALREADY_CLOSED -7 Call to close COM port was made when the COM port is
not open; there is no connection.

SSICOMM_UNABLE_PURGE -8 Call to purge the COM port before closing it was not
successful.

SSICOMM_THREADS_BADEXIT -9 Fatal error - the threads didn't exit properly.

SSICOMM_ERROR_CLRDTR -10 Unable to lower DTR when closing COM port.

SSICOMM_BAD_CREATEFILE -11 Unable to open COM port.

SSICOMM_BAD_READTHREAD -12 Unable to create the read/status thread; no connection.

SSICOMM_BAD_WRITETHREAD -13 Unable to create the writer thread; no connection.

SSICOMM_BAD_CREATEEVENT -14 Call to CreateEvent failed; fatal error.

SSICOMM_BUSY -15 Not fatal; SSI driver is busy processing data.

SSICMD_UNIMPLEMENTED -16 Not fatal; this command is not implemented in the library.

SSICOMM_ALREADYCONNECTED -17 If already connected, can't connect without a call to
disconnect.

Simple Serial Interface (SSI) API 1 - 33
ERR_SSI_MISMATCHHWND -18 The hwnd parameter for the function does not match the
stored hwnd for the connection.

SSICOMM_TOOMUCHDATA -19 The maximum allowable input data length was exceeded.

SSICOMM_ERRVERSION -20 Can't run on this version of Windows.

SSI_INPUTQ_FULL -21 Unable to add new user request to input queue for
transmitting to scanner; re-try request.

SSICOMM_BADDATA -22 Parameter data is in incorrect format.

SSIFW_UPDATE_FAILED -40 Generic error accessing firmware update function.

SSIFW_FILE_OPEN_FAIL -41 Firmware file could not be opened.

SSIFW_INVALID_CHECKSUM -42 Checksum calculation for firmware file failed.

SSIFW_COM_PORT_FAIL -43 Unable to open COM port.

SSIFW_FW_UPDATE_MODE_FAIL -44 Failed to enter firmware update mode.

SSIFW_PROG_COM_PORT_FAIL -45 Unable to set requested baud rate on the COM port.

SSIFW_FILE_READ_FAIL -46 Unable to read records from firmware file.

SSIFW_TX_FAIL -47 Failure in serial transmission.

SSIFW_RX_FAIL -48 Failure in serial receiving.

SSIFW_INVALID_REC -49 Checksum calculation for the record failed.

SSIFW_UPDATE_FAILED_IN_SCN -50 Failure occurred while updating firmware.

SSIFW_UPDATE_ABORTED -51 User aborted firmware update process.

SSIFW_UPDATE_INPROGRESS -52 Firmware update already in progress.

SSIFW_ABORT_FAILED -53 Failed to acquire SSI handle.

Table 1-1 Error Codes (Return Values for API Calls) (Continued)

Define Name Value Description

1 - 34 Simple Serial Interface (SSI) Software Developer’s Kit Programmer Guide
SSI WM_ERROR Messages

The following generate WM_ERROR messages to the calling application. Most are fatal errors occurring during
program execution, and are returned in the WPARAM associated with the WM_ERROR message.

The following error codes are placed in the wParam of WM_ERROR messages during SSI protocol handling of
scanner messages.

Table 1-2 WM_ERROR Messages

Define Name Value Description

SSICOMM_WAITMOWRITER -23 Wait for Multiple Objects resulted in WAIT_FAILED in writer
procedure; if not fatal, protocol retry may recover.

SSITHREAD_CREATEWEVENT -24 Failure to create write event; fatal error.

SSITHREAD_OLRESW -25 Get overlapped result failed; fatal error.

SSITHREAD_WRITEERR -26 Number of bytes written is not the number requested to be
written; if not fatal, retry may recover.

SSITHREAD_WMOW -27 Wait multiple objects failure in overlapped write; fatal.

SSITHREAD_WRITEFILEFAIL -28 Call to Write failed, but isn't just delayed; fatal error.

SSITHREAD_BADSETEV -29 Write thread returned error on set event.

SSIRTHREAD_ORESULT -30 Read thread bad overlapped result; fatal error.

SSIRTHREAD_SETMASK -31 Read thread bad set mask return; fatal error.

SSIRTHREAD_BADREAD -32 Read thread bad read; fatal error.

SSIRTHREAD_CREATEREVENT -33 Read thread bad create read event; error code set, API call
will return false.

SSIRTHREAD_CREATESEVENT -34 Read thread bad create status event; error code set, API
call will return false.

SSIRTHREAD_WAITCEVENT -35 Read thread wait COM event bad return; fatal error.

Table 1-3 WM_ERROR Messages in wParam

Define Name Value Description

COMMAND_NOTHANDLED -36 Command not processed successfully by decoder.

ERR_UNSUPPORTED_COMMAND -37 Command not processed successfully by decoder.

SSI_DATAFORMAT_ERR -38 Scanner data packet not of correct format from
decoder.

ERR_UNEXPECTEDDATA -39 State machine received data unexpected for the
current state.

Simple Serial Interface (SSI) API 1 - 35
SSI WM_TIMEOUT Messages

One of these OPCODES is placed in the LPARAM of the SSI WM_TIMEOUT message.

Beep Command Parameters
Table 1-5 lists the beep codes for the Sound Beeper function.

Table 1-4 OPCODES in lParam

DECODE_DATA_TIMEOUT 0xF3

IMAGE_DATA_TIMEOUT 0xB1

VIDEO_DATA_TIMEOUT 0xB4

Table 1-5 Beep Codes

Define Name Value (hexadecimal)

ONESHORTHI 0x00

TWOSHORTHI 0x01

THREESHORTHI 0x02

FOURSHORTHI 0x03

FIVESHORTHI 0x04

ONESHORTLO 0x05

TWOSHORTLO 0x06

THREESHORTLO 0x07

FOURSHORTLO 0x08

FIVESHORTLO 0x09

ONELONGHI 0x0A

TWOLONGHI 0x0B

THREELONGHI 0x0C

FOURLONGHI 0x0D

FIVELONGHI 0x0E

ONELONGLO 0x0F

TWOLONGLO 0x10

THREELONGLO 0x11

1 - 36 Simple Serial Interface (SSI) Software Developer’s Kit Programmer Guide
Data Returned by the DLL
The host application provides the destination data buffer for use by the DLL. When the scanner sends data to the
DLL, the destination buffer is filled with the scanner's data. Data is formatted according to the SSI specification;
refer to the Simple Serial Interface Programmer’s Guide. Once the destination buffer is filled by the DLL (if a buffer
was set), the application is sent a WM_xxx message with the number of bytes of data that were stored indicated in
the LPARAM. If the buffer wasn't large enough to hold all the data, WPARAM's last 2 bits are set to zero. If no
buffer was given to the DLL for the data to be stored in, the last 2 bits of WPARAM are 01. If the data was stored
correctly, the last 2 bits of WPARAM are 11. The following #defines are provided for this purpose.

After the message is sent, the DLL marks the buffer as NULL indicating no user buffer is available for storage. The
host application should reset the buffer after a WM_xxx message occurs. A second call to set the data buffer
causes the new buffer to be used for incoming data. For example, after a WM_DECODE message is sent to the
application, the application should handle the message and process the data in the destination buffer, then call
SetDecodeBuffer again.

FOURLONGLO 0x12

FIVELONGLO 0x13

FASTHILOHILO 0x14

SLOWHILOHILO 0x15

HILO 0x16

LOHI 0x17

HILOHI 0x18

LOHILO 0x19

Table 1-5 Beep Codes (Continued)

Define Name Value (hexadecimal)

Table 1-6 #defines

Define Name Value

BUFFERSIZE_MASK 0x0003

BUFFERSIZE_GOOD 0x0003

BUFFERSIZE_ERROR 0x0000

NOBUFFER_ERROR 0x0001

Simple Serial Interface (SSI) API 1 - 37
Windows Messages Sent to Calling Process
Message: WM_DECODE

Value: WM_APP+1

Description: Decode data is available from the scanner and is stored in the buffer
provided by a previous call to SetDecodeBuffer.

Parameters: wParam: buffer status of the data stored
lParam: length of the data in bytes (cast to int)

Data Format: The bar code type is stored in the first byte and the decoded message
is contained in the Decode Data field. For bar code types, see the
Simple Serial Interface (SSI) Programmer’s Guide.

If the decoded data contains more structure than can be presented in the standard format, the Bar Code Type field
is set to 0x99 and the decode data is formatted into packets. In this case, the first byte of the Decode Data field
contains the actual Bar Code Type, the 2nd byte contains the number of packets, and the remaining data is the
packeted form of decode data.

For example, a packeted Decode Data message for Micro PDF417 would look like the format below, where the
Decode Data field is broken out as follows:

Note that the Packet Length subfields consist of two bytes, where the first byte represents the high value of length
x 256.

Bar
Code
Type

Decode Data Field

Actual Bar
Code Type

of
Packets

Spare
Byte

Byte Length
of Packet #1 Data

Spare
Byte

Byte Length
of Packet #2 Data

0x99 1A 2 0 00 03 ABC 0 00 04 DEFG

Bar Code TypeDecode Data Field

1 - 38 Simple Serial Interface (SSI) Software Developer’s Kit Programmer Guide
Message: WM_IMAGE

Value: WM_APP+2

Description: Image data is available from the scanner and is stored in the buffer
provided by a previous call to SetImageBuffer.

Parameters: wParam: buffer status of the data stored
lParam: length of the data in bytes (cast to long)

Data Format: An image preamble followed by the image data.

Images sent from the decoder to the host are described by the image preamble contained in the first 10 bytes,
followed by the image. The details of the image preamble follow.

The image preamble consists of the following fields:

Table 1-7 Image Preamble Fields

Field Field Size Description

File size 4 byte field Number of bytes in the overall image.

Image Width 2 byte field Image width in pixels

Image Height 2 byte field Image height in pixels

Image Type 1 byte field 0x31 = JPEG Image File
0x33 = BMP Windows Bit Map File
0x34 = TIFF File
Note: These values are ASCII.

Bits per Pixel 1 byte field Number of bits per pixel in image
0 = 1 bit/pixel Black White Image
1 = 4 bit/pixel 16 Grayscale Image
2 = 8 bit/pixel 256 Grayscale Image

PreambleImage Frame

Simple Serial Interface (SSI) API 1 - 39
Message: WM_VIDEOIMAGE

Value: WM_APP+3

Description: A video frame is available from the scanner and is stored in the buffer
provided by a previous call to SetVideoBuffer.

Parameters: wParam: buffer status of the data stored
lParam: length of the data in bytes (cast to int)

Data Format: The first 10 bytes of a video frame contains the video preamble,
described below. The remaining data is the JPEG data comprising the
video frame.

The video preamble consists of the following fields:

Message: WM_ERROR

Value: WM_APP+4

Description: An error occurred. This message may be sent in response to an API Command or
Request for data.

Parameters: wParam: error code (cast to int) (see WM_ERROR codes list)

Message: WM_TIMEOUT

Value: WM_APP+5

Description: Scanner did not respond to a request from the library within the timeout period
during processing of unsolicited data (decode data, image data or video data)
from the scanner.

Parameters: wParam: set to zero (reserved for future use)
lParam: code (int) indicating what message was being processed when the
timeout occurred (see WM_TIMEOUT codes list)

Table 1-8 Video Preamble Fields

Field Field Size Description

File size 4 byte field Number of bytes in the overall image.

Image Width 2 byte field Image width in pixels

Image Height 2 byte field Image height in pixels

Image Type 1 byte field 0x31 = JPEG Image File
0x33 = BMP Windows Bit Map File
0x34 = TIFF File
Note: These values are ASCII.

Bits per Pixel 1 byte field Number of bits per pixel in image
0 = 1 bit/pixel Black White Image
1 = 4 bit/pixel 16 Grayscale Image
2 = 8 bit/pixel 256 Grayscale Image

PreambleVideo Frame

1 - 40 Simple Serial Interface (SSI) Software Developer’s Kit Programmer Guide
Message: WM_CMDCOMPLETEMSG

Value: WM_APP+6

Description: Verifies that the scanner has handled the command that was issued.
API functions that request data from the scanner will not receive this message.

Parameters: None

Message: WM_XFERSTATUS

Value: WM_APP+7

Description: Image data is transferring from the scanner.

Parameters: wParam: total number of bytes received so far (cast to uint)
lParam: total number of bytes expected (cast to uint)

Message: WM_SWVERSION

Value: WM_APP+8

Description: Software version information is available from the scanner and is stored in the
buffer provided by a previous call to SetVersionBuffer.
This message is received in response to an API request for version data.

Parameters: wParam: buffer status code
lParam: length of the data in bytes (cast to int)

Data Format: Revision string:

S/W_REVISION <space> BOARD_TYPE <space> ENGINE_CODE <space> PGM_CHKSUM
where:

• S/W_REVISION is the release name of the software

• BOARD_TYPE is N for non-flash decoder board, F for flash

• ENGINE_CODE indicates the type of scan engine paired with the decoder (see the scan engine’s Integration
Guide for the engine code value)

• PGM_CHKSUM is the two or four byte checksum of the program code (scanner dependent)

Simple Serial Interface (SSI) API 1 - 41
Message: WM_PARAMS

Value: WM_APP+9

Description: Parameter information is available from the scanner and is stored in the buffer
provided by a previous call to SetParameterBuffer. This message is received in
response to an API request for parameter data.

Parameters: wParam: buffer status
lParam: length of the param data (cast to int)

Data Format: Parameter numbers may be a single byte or two bytes. Parameter numbers
consisting of two bytes begin with an extended parameter code of F0h (+256),
F1h (+512), F2h (+768). These access parameters whose numbers are 256 and
higher. For example, to access the first parameter in the 256-511 range, use
F0h and 00h. Parameter values may also be a single byte or two bytes. If the
value is two bytes instead of one, the parameter number is preceeded by a byte
containing F4h.

Table 1-9 Param Data Format

Parameter Number Data Format

0 through EFh <param_num> <value>

>EFh <extended parameter code> <param_num offset> <value>

1 - 42 Simple Serial Interface (SSI) Software Developer’s Kit Programmer Guide
Message: WM_CAPABILITIES

Value: WM_APP+10

Description: Capabilities data is available from the scanner and is stored in the buffer provided
by a previous call to SetCapabilitiesBuffer.
This message is received in response to an API request for capabilities data.

Parameters: wParam: buffer status
lParam: length of the data in bytes (cast to int)

Data Format: Scanner capabilities data is packed into four data fields: Baud Rates Supported,
Misc. Serial Parameters, Multipacket Options, and Command List.

Table 1-10 Data Fields

Field Size Description Supported

Baud Rates Supported 2 Bytes Bit mapped Bit Definition 1 = Supported
0 = Not Supported

0 300 Baud

1 600 Baud

2 1200 Baud

3 2400 Baud

4 4800 Baud

5 9600 Baud

6 19200 Baud

7 28800 Baud

8 38400 Baud

9 57600 Baud

10 115200 Baud

11 Reserved

12 Reserved

13 Reserved

14 Reserved

15 Reserved

Simple Serial Interface (SSI) API 1 - 43
Message: WM_EVENT

Value: WM_APP+11

Description: Event data is available from the scanner. No destination buffer is required for this
unsolicited data from the scanner; the data is sent in the WPARAM along with the
message.

Parameters: wParam: event data
lParam: length of the data in bytes (always 1 byte)

Misc Serial Parameters 1 Byte Bit Mapped Bit Definition 1 = Supported
0 = Not Supported

0 Odd Parity

1 Even Parity

2 Parity None

3 Check Parity

4 Do Not Check Parity

5 One Stop Bit

6 Two Stop Bits

Multipacket Options 1 Byte Bit Mapped Bit Definition 1 = Supported
0 = Not Supported

0 Option 1

1 Option 2

2 Option 3

Command List 1 Byte per Command In this sequential list, the decoder details the opcodes
of the SSI commands it supports. For example, imagers
support video commands, while laser-based decoders
do not. Commands associated with video mode do not
appear in the list for laser-based decoders, but do for
imagers (see Simple Serial Interface (SSI)
Programmer’s Guide).

Table 1-10 Data Fields (Continued)

Field Size Description Supported

1 - 44 Simple Serial Interface (SSI) Software Developer’s Kit Programmer Guide
Message: WM_FW_UPDATE_PROGRESS

Value: WM_APP+13

Description: Indicates firmware update progress. It keeps the wParam value at 0 (Case 1) to
indicate the initial stages of firmware update. See Table 1-11. lParam returns the
current status.

During firmware update, the same message indicates the number of records updated
(Case 2). lParam indicates the number of records updated so far, and wParam
contains the total number of records that must be sent to the scanner.

Parameters: Case1: Used to report initial steps in firmware update process.
wParam: Zero (cast to int)
lParam: Indicates the current status of the firmware update process (cast to int)

Case 2: A message is sent after every record update during firmware update.
wParam: Non-zero. Total number of records in firmware file (cast to DWORD)
lParam : Number of records updated so far (cast to DWORD)

Message: WM_FW_UPDATED_BAUD

Value: WM_APP+14

Description: Indicates the baud rate used during the firmware update. It attempts to negotiate the
maximum baud rate with the scanner, and returns the baud rate used in lParam.

Parameters: lParam: Negotiated baud rate used during firmware update (cast to DWORD)

Table 1-11 lCurrent Status of Firmware Update Process

Value Description

10 Firmware file opened

9 Checsum validation successful

8 COM port opened successfully

7 Successful switch to firmware update mode

6 Baud rate negotiated successfully with scanner

5 Starting firmware download

4 Firmware update failed to complete

3 Firmware update completed successfully

Simple Serial Interface (SSI) API 1 - 45
Message: WM_FW_UPDATE_FAILED

Value: WM_APP+15

Description: Firmware update process failed, most commonly due to a fatal error. The error code is
returned in lParam associated with the message. See Table 1-12.

Parameters: lParam: Error code indicating the cause of failure (cast to DWORD)

The following generate WM_FW_UPDATE_FAILED messages to the calling application. The error code is returned
in the LPARAM associated with the WM_FW_UPDATE_FAILED message.

Table 1-12 WM_FW_UPDATE_FAILED Messages

Define Name Value Description

SSIFW_UPDATE_FAILED -40 Generic error accessing firmware update function.

SSIFW_FILE_OPEN_FAIL -41 Unable to open firmware file.

SSIFW_INVALID_CHECKSUM -42 Checksum calculation for firmware file failed.

SSIFW_COM_PORT_FAIL -43 Unable to open COM port.

SSIFW_FW_UPDATE_MODE_FAIL -44 Failed to enter firmware update mode.

SSIFW_PROG_COM_PORT_FAIL -45 Unable to set requested baud rate on the COM port.

SSIFW_FILE_READ_FAIL -46 Unable to read records from firmware file.

SSIFW_TX_FAIL -47 Failure in serial transmission.

SSIFW_RX_FAIL -48 Failure in serial receiving.

SSIFW_INVALID_REC -49 Checksum calculation for the record failed.

SSIFW_UPDATE_FAILED_IN_SCN -50 Failure occurred while updating firmware.

SSIFW_UPDATE_ABORTED -51 User aborted firmware update process.

1 - 46 Simple Serial Interface (SSI) Software Developer’s Kit Programmer Guide

Chapter 2 ActiveX Control
Introduction
SSIConnect.ocx is a component that may be added to a Visual Basic project. It allows you to send commands to a
Motorola scanner and request data from the scanner using the serial port. The control also handles bar code and
image data sent from the scanner. This chapter provides examples for using the ocx; refer to the on-line help for
specific information on using the ocx and its properties, methods and events.

Adding the SSIConnect Component to Your Project

Once the control is registered, it may be added to your project. In Visual Basic 6.0, click on the project menu, then
choose Components. A list of all the registered controls on your system appears, including the SSIConnect Active
X control. Check this item and click OK. An icon for the control appears, which you may drag and drop onto your
form.

Setting Properties

After you have dropped the control onto your form, you can set the properties for the control. Visual Basic assigns
the control the default name SSIConnect1. This name allows you access to the properties and functionality of the
control during run-time. You may change the name when you design the form. Do not change any other properties
except for the following, which you must set according to your system:

• ComPortNumber - Set this to the COM port on your PC the scanner is attached to. Set the value to 1 for
COM1, 2 for COM2 etc.

• BaudRate - Set to the baud rate the scanner uses. Most scanners default to 9600. See your scanner’s
documentation for baud rates supported. Values are input as 9600 for 9.6kb, 115200 for 115.2kb, etc.

NOTE SSI SDK 3.0, SSIConnect ActiveX control does not support Update Firmware and Abort Firmware
Update features.

NOTE When using ActiveX control in C# application, after adding SSIConnect Control onto Form control, remove
the existing references for stdole, SSICONNECTLib, and AxSSICONNECTLib, and add references to
stdole.dll, SSICONNECTLib.dll, and AxSSICONNECTLib.dll located in (Drive):\Program
Files\Motorola\SSI SDK\SDK.

2 - 2 Simple Serial Interface (SSI) Software Developer’s Kit Programmer Guide
• ParameterPersistance - Set to TRUE if you want scanner parameters changed by your program to change
permanently. Set to FALSE to cause parameter changes to be temporary.

• ImageFilename - Enter the name of the file to save image data to. Do not enter a filename extension; this is
added by the control according to the image type the scanner sends. Note that only imaging scanners
support image data.

• SendMacroPDFDataOnAbort - Set to TRUE for the scanner to send buffered MacroPDF data when it
receives an abort command from your program. Set to FALSE to discard buffered data. Note that not all
scanners support MacroPDF decoding.

• LEDCode - Set the LED(s) that will be turned off or on when you send the LED command. Values are
scanner-specific.

• BeepCode - Set the beep sequence the scanner emits when it receives a beep command. Valid values are 0
through 25. See your scanner documentation for beep codes. For the VS 4000, beep codes are as follows:

Table 2-1 VS 4000 Beep Codes

Beep Code Value

ONESHORTHI 0

TWOSHORTHI 1

THREESHORTHI 2

FOURSHORTHI 3

FIVESHORTHI 4

ONESHORTLO 5

TWOSHORTLO 6

THREESHORTLO 7

FOURSHORTLO 8

FIVESHORTLO 9

ONELONGHI 10

TWOLONGHI 11

THREELONGHI 12

FOURLONGHI 13

FIVELONGHI 14

ONELONGLO 15

TWOLONGLO 16

THREELONGLO 17

FOURLONGLO 18

FIVELONGLO 19

FASTHILOHILO 20

ActiveX Control 2 - 3
You may also also retrieve and change these properties while your program is running using the name of your
control. For example, if you have not changed the default and your control is named SSIConnect1, add the
following code to your VB program to retrieve the value for the COM port number:

Dim b As Long
b = SSIConnect1.ComPortNumber

Note that the COM port number is a Long value. To set the port number to use COM port 5, add:

SSIConnect1.ComPortNumber = 5

Baud rate is also a Long value, so it can be changed in the same manner.

To change the other properties, Dim a variable of the type expected for the property:

• Image filename requires a String variable

• LED code and Beep code require an Integer variable

• The remaining properties require a Boolean variable.

For example, to get and set the filename to a different value:

Dim name As String
' this gets the current name
name = SSIConnect1.ImageFilename
' this sets the name to hello
SSIConnect1.ImageFilename = "hello"

SLOWHILOHILO 21

HILO 22

LOHI 23

HILOHI 24

LOHILO 25

Table 2-1 VS 4000 Beep Codes (Continued)

Beep Code Value

2 - 4 Simple Serial Interface (SSI) Software Developer’s Kit Programmer Guide
Communicating with the Scanner Using Your Control
After setting your control's properties, you may call methods to command the scanner to perform different
functions. The control reports the results of your commands, and also reports when it receives decode and image
data from the scanner.

You must add code to your VB program to send the commands to the scanner and to handle notification events. In
your handler you must call other methods to retrieve data sent by the scanner.

Your communication with the scanner is like a transaction. The host sends a single command to the scanner; when
the scanner performs the command, it is ready to accept a new command.

Remember to scan the SSI Host parameter bar code for the VS 4004 imager before testing your program. You
must also set two important parameters, either via bar code parameter or using the ChangeParameter method: set
Trigger Mode to Host, and Decode Data Packet Format to Send Packeted Decode Data. See
ChangeParameter(Parameter As Long, Value As Long) As Long on page 2-7 for details.

Command Methods

The first method you must call is ConnectComPort, and the last is DisconnectComPort. ConnectComPort opens
your COM port for communication with the scanner. DisconnectComPort closes the COM port and releases the
host PC's memory used during the scanning session.

To see how this works, in your VB project where you have dropped the SSIConnect control:

1. Drag and drop a button control onto your form.

2. Change the Caption property of the button to Connect, then double-click the button.

3. Visual Basic will have added an empty sub-routine. Add the following lines of code to this sub-routine:
Dim Status As Long
Status = SSIConnect1.ConnectComPort()

The status returned is zero if the function was successful. We recommend checking the return value and displaying
a message indicating if the connection was successful.

If the return status is not zero, either your COM port number is incorrect or it is already in use. Make sure you are
using the correct COM port number, and that no other program (e.g., ActiveSync) is using this port.

Add a button for disconnecting in the same manner, and add the following lines to the sub-routine:

Dim Status As Long
Status = SSIConnect1.DisconnectComPort()

The following sections describe the methods your program may call which command the scanner to perform an
action. In Visual Basic, enter the name of the control, followed by a decimal point. A list of all available properties
and methods appears. If you select a method from the list, when you enter an open parenthesis a list of the
parameters the method requires from your program appears, along with their types.

The following methods send a command to the scanner. They all return the status, which is zero if the command
was successful.

ActiveX Control 2 - 5
SendCommand(Command As Long) As Long

Description

The control allows you to send the commands in Table 2-2 as a parameter to the method.

Example
Dim Status As Long
Status = SSIConnect1.SendCommand(ssiEnableScanner)

Table 2-2 Commands

Command Value Function

ssiTurnAimOn 0 Turns aiming light on*

ssiTurnAimOff 1 Turns aiming light off*

ssiTurnLedOn 2 Turns the LED specified by the LEDCode on*

ssiTurnLedOff 3 Turns the LED specified by the LEDCode off*

ssiEnableScanner 4 Enables scanner*

ssiDisableScanner 5 Disables scanner; scanner will not respond to a trigger pull*

ssiSendBeep 6 Sounds the beep specified by the BeepCode property*

ssiSWTriggerPull 7 Software trigger pull *, ***

ssiSWTriggerRelease 8 Software trigger release*

ssiAbortImage 9 If sent when the scanner is sending image data after taking a picture,
the data transfer is aborted

ssiTakePicture 10 Sets the imager to snapshot mode, rather than decode mode. When
the trigger is pulled, the imager takes a picture and sends the data
to the PC *, ***

ssiStartVideoStream 11 Reserved - do not use

ssiRequestCapabilities 12 Commands the scanner to send its capabilities data to the PC**

ssiRequestAllParameters 13 Commands the scanner to send to the PC all supported parameters
and their current values**

*These commands result in a status event that may be handled in your program. See Events on page
2-10.
**These commands result in the scanner sending data to your program. When the data is
available, you receive an event that can be handled by your program. If a problem occurred, your
program can receive a status event. See Events on page 2-10 for the types of events and how they may
be handled in your program.
***After sending the commands ssiTakePicture and ssiSWTriggerPull consecutively, wait for
related events to fire. If you must terminate before the full image is captured, send ssiAbortImage
before terminating the task.

2 - 6 Simple Serial Interface (SSI) Software Developer’s Kit Programmer Guide
RequestParameter(Parameter As Long) As Long

Description

This method commands the scanner to send the current setting for the given parameter number. In the example,
the scanner is asked for the current setting for the trigger mode. The method returns zero if the command is
successful. When the scanner sends the data requested to the host PC, your program is notified with an event. For
information on handling the event, see Events on page 2-10.

Example

Dim Status As Long
Dim TriggerModeParam As Long
TriggerModeParam = 138
Status = SSIConnect1.RequestParameter(TriggerModeParam)

ssiRequestVersionData 14 Commands the scanner to send its version data to the PC**

ssiTerminateMacroPDF 15 When decoding MacroPDF, this aborts the current sequence. Any
buffered data is either discarded or sent to the PC depending on the
setting of the SendMacroPDFDataOnAbort property*

 ssiEnterLowPowerMode 16 Commands the scanner to enter low power mode*

Table 2-2 Commands (Continued)

Command Value Function

*These commands result in a status event that may be handled in your program. See Events on page
2-10.
**These commands result in the scanner sending data to your program. When the data is
available, you receive an event that can be handled by your program. If a problem occurred, your
program can receive a status event. See Events on page 2-10 for the types of events and how they may
be handled in your program.
***After sending the commands ssiTakePicture and ssiSWTriggerPull consecutively, wait for
related events to fire. If you must terminate before the full image is captured, send ssiAbortImage
before terminating the task.

ActiveX Control 2 - 7
ChangeParameter(Parameter As Long, Value As Long) As Long

Description

This method commands the scanner to change the current setting for the given parameter number. In the example,
the scanner is asked to change the current setting for the trigger mode to Host Mode. The method returns zero if
the command is successful. When the command is processed, your program receives an event, which your
program can handle. See Events on page 2-10.

Example
Dim Status As Long
Dim TriggerModeParam As Long
Dim HostMode As Long
TriggerModeParam = 138
HostMode = 8
Status = SSIConnect1.ChangeParameter(TriggerModeParam, HostMode)

NOTE Some scanners require setting the trigger mode parameter to Host Mode during SSI communication. You
must also set parameter number 238, Decode Data Packet Format, to 1.

2 - 8 Simple Serial Interface (SSI) Software Developer’s Kit Programmer Guide
Parameter Numbers
Parameter numbers are provided in hexadecimal format, for example Stop Bit Select is 0x9D; Decode Event is
0xF0 0x00. Note that Stop Bit Select has a single hex number, while Decode Event has two. Parameter numbers
that have two hex numbers are called extended parameter numbers. In extended parameter numbers, the first
number is always 0xF0, 0xF1 or 0xF2.

The two hex numbers represent a four-digit hex value. For instance, the parameter number for Decode Event 0xF0
0x00 is the hex value 0xF000, which in decimal is 61440.

Values may be either one or two hex numbers. The allowable values depend on the parameter. For example, the
beeper tone parameter may only have values of low frequency, medium frequency or high frequency. When a
value has 2 hex numbers, the parameter number requires an additional hex number: 0xF4 is added in front of the
parameter number.

For example Beeper Tone has a non-extended parameter number with a value of only one hex number: 0x91, or
145 in decimal. Its values may be set to Low Frequency (value 0x02 or 2 in decimal), Medium Frequency (value
0x01 or 1 in decimal), or High Frequency (value 0x00 or 0 in decimal).

To use the control's ChangeParameter method to change the beeper tone to low frequency, use the following
command:

Status = SSIConnect1.ChangeParameter(145, 2)

Decode Event has an extended parameter number whose value is only one hex number: 0xF0 0x00 (0xF000 in
hex, 61440 in decimal). Its values may be set to 0 for disable, 1 for enable.

To use the control's ChangeParameter method to change the Decode Event parameter to its enable value, use the
following command:

Status = SSIConnect1.ChangeParameter(61440, 1)

For an example of a parameter that requires a word value, Gain Setting is 0xF0 0x37 (or F0h, 37h), representing
an extended parameter number of 0xF037. Its allowable values are 4 hex digits: 0080h, 00C0h, 0100h, 0140h, etc.
Since these values are not 2 hex digits, the parameter number must be preceded by 0xF4, so the parameter
number for Gain Setting becomes 0xF4F037, or 16052279 in decimal.

To use the control's ChangeParameter method to change the Gain Setting parameter to a value of 0080h (128 in
decimal) use the following command:

Status = SSIConnect1.ChangeParameter(16052279, 128)

Table 2-3 contains a sample of some parameters used in the VS 4000. These parameters may be enabled or
disabled in the scanner. The associated values for these parameters are zero (disable) and one (enable).

Table 2-3 VS 4000 Parameters

Parameter Name Parameter Number Allowable
Values

PARAMETER_SCANNING_PARAM 236 decimal or EC hex 0 or 1

BEEP_AFTER_GOOD_DECODE_PARAM 56 decimal or 38 hex 0 or 1

DECODING_AUTOEXPOSURE_PARAM 61481 decimal or F029 hex 0 or 1

DECODING_ILUMINATION_PARAM 61482 decimal or F02A hex 0 or 1

IMAGE_CAP_AUTOEXPOSURE_PARAM 61545 decimal or F069 hex 0 or 1

ActiveX Control 2 - 9
IMAGE_CAP_ILLUMINATION_PARAM 61544 decimal or F068 hex 0 or 1

UPCA_CODETYPE_PARAM 1 (decimal or hex) 0 or 1

UPCE_CODETYPE_PARAM 2 (decimal or hex) 0 or 1

UPCE1_CODETYPE_PARAM 12 decimal or 0C hex 0 or 1

EAN8_CODETYPE_PARAM 4 (decimal or hex) 0 or 1

EAN13_CODETYPE_PARAM 3 (decimal or hex) 0 or 1

BOOKLANDEAN_CODETYPE_PARAM 83 decimal or 53 hex 0 or 1

CODE39_CODETYPE_PARAM 0 (decimal or hex) 0 or 1

CODE39FULLASCII_CODETYPE_PARAM 17 decimal or 11 hex 0 or 1

TRIOPTICCODE39_CODETYPE_PARAM 13 decimal or 0D hex 0 or 1

CODE93_CODETYPE_PARAM 9 (decimal or hex) 0 or 1

COD128_CODETYPE_PARAM 8 (decimal or hex) 0 or 1

UCC128_CODETYPE_PARAM 14 decimal or 0E hex 0 or 1

ISBT128_CODETYPE_PARAM 84 decimal or 54 hex 0 or 1

CODABAR_CODETYPE_PARAM 7 (decimal or hex) 0 or 1

I2OF5_CODETYPE_PARAM 6 (decimal or hex) 0 or 1

D2OF5_CODETYPE_PARAM 5 (decimal or hex) 0 or 1

MSIPLESSEY_CODETYPE_PARAM 11 decimal or 0B hex 0 or 1

USPOSTNET_CODETYPE_PARAM 89 decimal or 59 hex 0 or 1

USPLANET_CODETYPE_PARAM 90 decimal or 5A hex 0 or 1

UKPOSTAL_CODETYPE_PARAM 91 decimal or 5B hex 0 or 1

JAPANPOSTAL_CODETYPE_PARAM 61474 decimal or F022 hex 0 or 1

AUSTRALIANPOST_CODETYPE_PARAM 61475 decimal or F023 hex 0 or 1

PDF417_CODETYPE_PARAM 15 decimal or 0F hex 0 or 1

MICROPDF417_CODETYPE_PARAM 227 decimal or E3 hex 0 or 1

DATAMATRIX_CODETYPE_PARAM 61476 decimal or F024 hex 0 or 1

MAXICODE_CODETYPE_PARAM 61478 decimal or F026 hex 0 or 1

QRCODE_CODETYPE_PARAM 61477 decimal or F025 hex 0 or 1

Table 2-3 VS 4000 Parameters (Continued)

Parameter Name Parameter Number Allowable
Values

2 - 10 Simple Serial Interface (SSI) Software Developer’s Kit Programmer Guide
Events
Your program can receive the following events from the control:

You may handle one or more of these events in your program. For instance, if you never make a call to
SendCommand(ssiRequestVersionData), you will not handle the VersionDataAvailable event since you will never
receive version data.

Event Handling in Visual Basic

To handle an event in Visual Basic:

1. Select the name of your control from the drop-down menu on the left in the Code window for your form.

2. Select an event from the drop-down menu on the right.

3. Visual Basic creates a sub-routine for this event. This sub-routine is the event handler. Some event handlers
get the event information as a parameter value, while others require calling a method to retrieve this data
during the event handling.

Table 2-4 Events

 Event Cause

AllParametersAvailable Command requesting all parameters

DecodeDataAvailable Bar code was scanned

EventDataAvailable Monitored event occurred

ImageDataAvailable Trigger pull during imager mode

ImageTransferStatusAvailable Image data is being sent from the scanner

ParameterAvailable Command requesting a single parameter

ScannerCapabilities Command requesting the scanner's capabilities

ScannerStatusAvailable Scanner's command ack or timeout/error

VersionDataAvailable Command requesting the scanner's version

VideoFrameAvailable Reserved

ActiveX Control 2 - 11
AllParametersAvailable

Description

The event handler for AllParametersAvailable is paired with a previous request using the
SendCommand(ssiRequestAllParameters) method. To retrieve the data, you must wait until the data is available;
then this event handler is called by the control. To retrieve the data during the event handler, use the
GetNextParameter method. The method may only be called during this event handler, and may be called
repeatedly until all parameters and their values are retrieved. Its parameter NumValues indicates how many
parameter values were returned. If NumValues is less than or equal to zero, an error occurred and the
GetNextParameter method should not be called.

Example
Dim ParamNumber As Long
Dim ParamVal As Long
Dim Status As Integer

Do While NumValues > 0 'NumValues came as an input param to this event handler

'GetNextParameter returns the next Parameter number and its value
'… and a status code which is set to zero when there is no parameter to return, or the
' …index of the parameter returned within NumValues

Status = SSIConnect1.GetNextParameter(ParamNumber, ParamVal)

' check the status and do something like display the param number and value
' … here if the status is not zero. If it is zero, break out of the while loop.

Loop

2 - 12 Simple Serial Interface (SSI) Software Developer’s Kit Programmer Guide
DecodeDataAvailable

Description

The event handler for DecodeDataAvailable has a single parameter for the length of the data received from the
scanner. To retrieve the available data, call the method GetDecodeData during this event handler if the length
parameter is greater than zero. If the length parameter is less than or equal to zero, an error occurred and
GetDecodeData should not be called.

Example
Dim SSIcodetype As Integer
Dim DecodeData As Variant
Dim NumDataChars As Long

' Send the Variant DecodeData to be filled with the scanner's data along with the
' Visual Basic Constant vbString to indicate the type of data to be returned and the
' …variable SSIcodetype which will be set to the ssi codetype id of the data.
NumDataChars = SSIConnect1.GetDecodeData(DecodeData, vbString, SSIcodetype)

Notes

The value for NumDataChars is one less than the value sent with the event handler since the data returned from
the scanner includes the SSICodetype. The maximum NumDataChars that will be returned is 5000. Note that with
PDF417 bar codes, the data may contain unprintable characters, including the null character. Although the data
may be accessed within the variant, it does not display as a string (e.g., fingerprint data held in the bar code).

The type specifier is needed because although Visual Basic programs may manipulate the data using a vbString,
Visual C++ programmers use a data type specifier of VT_UI1, and DecodeData would be a pointer to
ColeSafeArray, allowing the returned data to be manipulated as an array of unsigned character.

If the SSI CodeType returned has a value of 99 hex, the DecodeData is formatted as decode data packets as
described in the SSI Programmer’s Guide.

EventDataAvailable

Description

The event handler for EventDataAvailable sends a parameter that is the event code.

You will receive scanner event type data if you set Event Reporting parameters to monitor a particular type of
event, and that event occurs. Refer to Standard Default Parameters in the scanner’s Product Reference Guide for
information on Event Reporting parameters.

ActiveX Control 2 - 13
ImageDataAvailable

Description

The event handler for ImageDataAvailable sends a parameter that contains the image data as a picture. To display
the picture in your program, drag and drop a picture box control onto your form. In the event handler, set its picture
to the image sent by the SSIConnect.

For example, for a picture box with the default name Picture1:

Picture1.Picture = Image

ImageTransferStatusAvailable

Description

The event handler for ImageTransferStatusAvailable sends two parameters:

• TotalFileLength of the image

• CurrentFileLength indicates how much data was transferred so far.

If you include this handler, you may build a status message that displays in a label control while the scanner is
transferring data:

StrMessage = "Received " & Str(CurrentFileLength) & "bytes of " & Str(TotalFileLength)

ParameterAvailable

Description

The event handler for ParameterAvailable has no parameters. This event is received in response to an earlier
method call to RequestParameter. To retrieve the data, call the method GetParameter during this event handler
sub-routine.

Example

Dim TriggerModeParamNum = 138 ' set the parameter number to the parameter that you
Dim ParamValue As Long ' …requested earlier in the call to RequestParameter.
Dim Success As Boolean

' Send in the Parameter number, get back the Parameter's value
Success = SSIConnect1.GetParameter(TriggerModeParamNum, ParamValue)

The method returns TRUE if the parameter data that was sent was for the parameter number requested - in this
example, if the ParamValue sent by the scanner was for the trigger mode parameter, the return value is true. If you
are trying to get the value for a different parameter number than the one you requested, the function returns
FALSE. This function also returns FALSE if you call the GetParameter method more than once during the handler,
or if you call GetParameter anywhere other than in the ParameterAvailable event handler sub-routine.

2 - 14 Simple Serial Interface (SSI) Software Developer’s Kit Programmer Guide
Following is an example of program flow:

Pressing the connect button calls the SSIConnect1.ConnectComPort method. If that returns successful status, the
call to get the value of the trigger mode parameter is made:

Status = SSIConnect1.RequestParameter(TriggerModeParam).

This method's return value indicates if the command was sent successfully. After your event handler is called by
the control, the data is available for access using the GetParameter method.

ScannerCapabilities

Description

The event handler for ScannerCapabilities is paired with a previous call to
SendCommand(ssiRequestCapabilities). During the resulting ScannerCapabilities event handler you may call the
following methods to retrieve the scanner's capability data as long as the NumCommands parameter is greater
than zero:

• GetParityCheckCapabilities

• GetParityCapabilities

• GetStopBitsSupported

• MultiPacketOptionCapabilities

• GetSSICommandsSupported

• GetBaudRateCapabilities

ActiveX Control 2 - 15
Example
Dim NumBaudRates As Long
Dim BaudRates As Variant
Dim NumSSICommands As Long
Dim SSICommands As Variant
Dim odd As Boolean
Dim even As Boolean
Dim noparity As Boolean
Dim onestop As Boolean
Dim twostops As Boolean
Dim myopt1 As Boolean
Dim myopt2 As Boolean
Dim myopt3 As Boolean
Dim checkparity As Boolean
Dim dontchekparity As Boolean
Dim mystatus As Boolean

' mystatatus will be true if the capabilities were retrieved successfully

' the following functions return the capabilities of the scanner
' For example, if the scanner supports parity checking, the checkparity param will be true
'…If the scanner supports odd parity, the parameter odd will be true, etc.

mystatus = SSIConnect1.GetParityCheckCapabilities(checkparity, dontchekparity)
mystatus = SSIConnect1.GetParityCapabilities(odd, even, noparity)
mystatus = SSIConnect1.GetStopBitsSupported(onestop, twostops)
mystatus = SSIConnect1.MultiPacketOptionCapabilities(myopt1, myopt2, myopt3)

' This method returns the capabilities of the scanner with regard to the ssi commands
' ..that it supports. SSICommands contains the list of SSI Command opcodes as Long values, and ' its
method returns the number of SSI commands that are supported.

NumSSICommands = GetSSICommandsSupported(SSICommands)

' This method returns the number of baud rates supported by the scanner and the param
' BaudRates contains the list of supported baud rates as Long values
NumBaudRates = GetBaudRateCapabilities(BaudRates)

2 - 16 Simple Serial Interface (SSI) Software Developer’s Kit Programmer Guide
ScannerStatusAvailable

Description

The event handler for ScannerStatusAvailable sends a parameter that is the status code. The status code can
represent either command completion (zero) or an error/timeout code.

When you send a simple command to the scanner (see Table 2-2 on page 2-5; note items with a single asterisk)
you receive either command completion status or the error/timeout code if the command was not handled. You do
not receive command completion status for commands that request data; in this case, you either receive the data
or an error/timeout code.

VersionDataAvailable

Description

The event handler for VersionDataAvailable has a single parameter for the length of the data received from the
scanner. The event is paired with a previous call to SendCommand(ssiRequestVersion). During this event handler
you may call the method GetVersionData to retrieve the scanner's version data if the length parameter is greater
than zero. If the length parameter is less than or equal to zero, an error occurred and GetVersionData should not
be called.

Example
Dim VersionData As Variant
Dim NumDataChars As Long

' Send the Variant VersionData to be filled with the scanner's data along with the
' Visual Basic Constant vbString to indicate the type of data to be returned is a string
NumDataChars = SSIConnect1.GetVersionData(VersionData, vbString)

The type specifier is needed because although Visual Basic programs may manipulate the data using a vbString,
Visual C++ programmers would use a data type specifier of VT_UI1, and VersionData would be a pointer to
ColeSafeArray, allowing the returned data to be manipulated as an array of unsigned character.

The VersionData string returned is scanner dependent. If the data format follows that of the SSI specification, the
string returned is formatted as 4 labeled fields separated by CRLF: Software Revision:, Board Type:, Engine
Code:, and Program Checksum:. If the data format does not follow the specification, raw unformatted data is
returned. In this case, non-printable characters, including null characters, may be present in the data. The data is
still available but does not display as normal string data.

NOTE Engine Code and Checksum are returned as hex digits.

Index
A
ActiveX control . 2-1

adding to Visual Basic . 2-1
command methods . 2-4
communicating with scanner 2-4
event handling . 2-10
events . 2-10
setting properties . 2-1

API
AbortImageXfer . 1-5
AbortMacroPdf . 1-6
AimOn AimOff . 1-7
EnterLowPwrMode . 1-8
FlushMacroPdf . 1-9
LedOn LedOff . 1-10
PullTrigger . 1-11
ReleaseTrigger . 1-12
RequestAllParameters 1-13
RequestParameters . 1-14
RequestScannerCapabilities 1-16
ReturnDLLVersion . 1-17
ScanEnable ScanDisable 1-18
SetCapabilitiesBuffer . 1-19
SetDecodeBuffer . 1-20
SetImageBuffer . 1-21
SetParameterBuffer . 1-22
SetParameters . 1-23
SetParamPersistance . 1-24
SetVersionBuffer . 1-25
SetVideoBuffer . 1-26
SnapShot . 1-27
SoundBeeper . 1-28
SSIconnect . 1-2
SSIDisconnect . 1-3
TransmitVersion . 1-29
TransmitVideo . 1-30

UpdateFirmware . 1-31
API return values . 1-32

B
beep codes . 1-35

VS 4000 . 2-2
beep command parameters 1-35

C
command methods . 2-4

ChangeParameter . 2-7
RequestParameter . 2-6
SendCommand . 2-5

conventions
notational . vii

converting SSI param numbers to
SNAPI 1-23, 1-24, 1-30, 2-1, 2-7, 2-16
customer support . viii

D
DLL

return data . 1-36

E
error codes . 1-32, 1-34
event handling . 2-10
events . 2-10

AllParametersAvailable 2-11
DecodeDataAvailable . 2-12
EventDataAvailable . 2-12
ImageDataAvailable . 2-13
ImageTransferStatusAvailable 2-13
ParameterAvailable . 2-13

Index - 2 Simple Serial Interface (SSI) Software Developer’s Kit Programmer Guide
ScannerCapabilities . 2-14
ScannerStatusAvailable 2-16
VersionDataAvailable . 2-16

G
guide conventions

bullets . viii
italics . vii
lists . viii
user . vii

I
image preamble fields . 1-38
information, service . viii

L
library error reporting . 1-32

API return values . 1-32
SSI timeout messages 1-35
SSI WM error messages 1-34

M
message packets . 1-43

N
notational conventions . vii

P
parameter numbers . 2-8
parameters

VS 4000 . 2-8

S
scanner

command methods . 2-4
communication . 2-4
event handling . 2-10
events . 2-10

service information . viii
software handshaking

responses . 1-34
SSI API

AbortImageXfer . 1-5
AbortMacroPdf . 1-6
AimOn AimOff . 1-7
EnterLowPwrMode . 1-8
FlushMacroPdf . 1-9

LedOn LedOff . 1-10
PullTrigger . 1-11
ReleaseTrigger . 1-12
RequestAllParameters 1-13
RequestParameters . 1-14
RequestScannerCapabilities 1-16
ReturnDLLVersion . 1-17
ScanEnable ScanDisable 1-18
SetCapabilitiesBuffer . 1-19
SetDecodeBuffer . 1-20
SetImageBuffer . 1-21
SetParameterBuffer . 1-22
SetParameters . 1-23
SetParamPersistance . 1-24
SetVersionBuffer . 1-25
SetVideoBuffer . 1-26
SnapShot . 1-27
SoundBeeper . 1-28
SSIConnect . 1-2
SSIDisconnect . 1-3
TransmitVersion . 1-29
TransmitVideo . 1-30
UpdateFirmware . 1-31

SSI timeout messages . 1-35
SSI WM error messages . 1-34
SSIConnect . 2-1

adding to Visual Basic . 2-1
command methods . 2-4
communicating with scanner 2-4
event handling . 2-10
events . 2-10
setting properties . 2-1

support .viii

T
timeout messages . 1-35
transmission responses . 1-34

U
updating firmware . 1-31

windows messages . 1-44

V
video preamble fields . 1-39
VS 4000 beep codes . 2-2
VS 4000 parameters . 2-8

W
windows messages . 1-37

baud rate . 1-44

Index - 3
decode data . 1-37
errors . 1-39
event data . 1-43
image data . 1-38
image transfer . 1-40
parameters . 1-41
scanner capabilities . 1-42
timeout . 1-39
update progress . 1-44
version . 1-40
video data . 1-39

Index - 4 Simple Serial Interface (SSI) Software Developer’s Kit Programmer Guide

72E-59860-03 Revision A - September 2007

Motorola, Inc.
One Motorola Plaza
Holtsville, New York 11742, USA
1-800-927-9626
http://www.symbol.com

MOTOROLA and the Stylized M Logo and Symbol and the Symbol logo are registered in the U.S. Patent and Trademark Office.
All other product or service names are the property of their respective owners.
© Motorola, Inc. 2007

	SSI SDK Programmer Guide
	Revision History

	Table of Contents
	About This Guide
	Introduction
	Chapter Descriptions
	Notational Conventions
	Related Documents
	Service Information

	Simple Serial Interface (SSI) API
	Introduction
	API Descriptions
	SSIConnect
	SSIDisconnect
	AbortFWUpdate
	AbortImageXfer
	AbortMacroPdf
	AimOn/AimOff
	EnterLowPwrMode
	FlushMacroPdf
	LedOn/LedOff
	PullTrigger
	ReleaseTrigger
	RequestAllParameters
	RequestParameters
	RequestScannerCapabilities
	ReturnDLLVersion
	ScanEnable/ScanDisable
	SetCapabilitiesBuffer
	SetDecodeBuffer
	SetImageBuffer
	SetParameterBuffer
	SetParameters
	SetParamPersistance
	SetVersionBuffer
	SetVideoBuffer
	SnapShot
	SoundBeeper
	TransmitVersion
	TransmitVideo
	UpdateFirmware

	Library Error Reporting
	API Return Values
	SSI WM_ERROR Messages
	SSI WM_TIMEOUT Messages

	Beep Command Parameters
	Data Returned by the DLL
	Windows Messages Sent to Calling Process

	ActiveX Control
	Introduction
	Adding the SSIConnect Component to Your Project
	Setting Properties

	Communicating with the Scanner Using Your Control
	Command Methods
	SendCommand(Command As Long) As Long
	RequestParameter(Parameter As Long) As Long
	ChangeParameter(Parameter As Long, Value As Long) As Long

	Parameter Numbers
	Events
	Event Handling in Visual Basic
	AllParametersAvailable
	DecodeDataAvailable
	EventDataAvailable
	ImageDataAvailable
	ImageTransferStatusAvailable
	ParameterAvailable
	ScannerCapabilities
	ScannerStatusAvailable
	VersionDataAvailable

	Index

